Vì : \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) ⇒ \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
Hay: a+b/c+d
Và: a-b/c-d
cùng = a/c=b/d
vậy : \(\dfrac{a+b}{c+d}\) = \(\dfrac{a-b}{c-d}\) (đpcm)
Vì : \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) ⇒ \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
Hay: a+b/c+d
Và: a-b/c-d
cùng = a/c=b/d
vậy : \(\dfrac{a+b}{c+d}\) = \(\dfrac{a-b}{c-d}\) (đpcm)
CMR từ hệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) ta có hệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức là có nghĩa ) :
a) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
cho dãy tỉ số bằng nhau:\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
tìm giá trị biểu thức:
M = \(\dfrac{a+b}{c +d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tìm giá trị của biểu thức: \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho \(\dfrac{a+b+c-d}{d}\)=\(\dfrac{b+c+d-a}{a}\)=\(\dfrac{c+d+a-b}{b}\)=\(\dfrac{d+a+b-c}{c}\), (a+b+c+d) khác 0
tính giá trị của biểu thức: P=(1+\(\dfrac{b+c}{a}\))(1+\(\dfrac{c+d}{b}\))(1+\(\dfrac{d+a}{c}\))(1+\(\dfrac{a+b}{d}\))
cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\) với a+b+c+d ≠ 0. Tính giá trị biểu thức M = \(\dfrac{2a-b}{c+d}=\dfrac{2b-c}{d+a}=\dfrac{2c-d}{a+b}=\dfrac{2d-a}{b+c}\)
Cho dãy tỉ số bằng nhau \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)
Tính giá trị của biểu thức \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho các số a,b,c,d thỏa mãn
\(\dfrac{a}{b+c+d}=\dfrac{b}{c+d+a}=\dfrac{c}{d+a+b}=\dfrac{d}{a+b+c}\)
Tính giá trị biểu thức
P=\(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{b+a}+\dfrac{d+a}{b+c}\)