Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
okokok

Cho dãy tỉ số bằng nhau \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)

Tính giá trị của biểu thức \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

Lê Trung Hiếu
5 tháng 11 2018 lúc 20:09

ta có \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)

=> \(\left(\dfrac{a}{b+c+d}+1\right)=\left(\dfrac{b}{a+c+d}+1\right)=\left(\dfrac{c}{a+b+d}+1\right)=\left(\dfrac{d}{a+b+c}+1\right)\)

(=) \(\dfrac{a+b+c+d}{b+c+d}=\dfrac{a+b+c+d}{a+c+d}=\dfrac{a+b+c+d}{a+b+d}=\dfrac{a+b+c+d}{a+b+c}\)

*Nếu a+b+c+d=0

=> \(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{matrix}\right.\)

=> M=(-1)+(-1)+(-1)+(-1)=(-4)

Nếu a+b+c+d\(\ne\)0

=> a=b=c=d

=> M=1+1+1+1=4

dmcldt12
5 tháng 11 2018 lúc 20:40

Xét a+b+c+d=0

\(\Rightarrow\)a=-(b+c+d).Thay vào \(\dfrac{a}{b+c+d}\)ta có

\(\dfrac{-\left(b+c+d\right)}{b+c+d}\)=-1.Làm tương tự như thế ta có

M=-1+(-1)+(-1)+(-1)=-4

Xét a+b+c+d\(\ne\)0

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{b+c+d}\)=\(\dfrac{b}{a+c+d}\)=\(\dfrac{c}{a+b+d}\)=\(\dfrac{d}{b+c+a}\)

=\(\dfrac{a+b+c+d}{2\cdot\left(a+b+c+d\right)}\)=\(\dfrac{1}{2}\)

\(\dfrac{a}{b+c+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2a=b+c+d

\(\Rightarrow\)3a=a+b+c+d\(\left(1\right)\)

\(\dfrac{b}{a+c+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2b= a+c+d

\(\Rightarrow\)3b=a+b+c+d\(\left(2\right)\)

\(\dfrac{c}{a+b+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2c=a+b+d

\(\Rightarrow\)3c=a+b+c+d\(\left(3\right)\)

\(\dfrac{d}{b+c+a}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2d=b+c+a

\(\Rightarrow\)3d=a+b+c+d\(\left(4\right)\)

Từ\(\left(1\right)\),\(\left(2\right)\),\(\left(3\right)\),\(\left(4\right)\)

\(\Rightarrow\)3a=3b=3c=3d

\(\Rightarrow\)a=b=c=d.Khi đó

M=\(\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)

=1+1+1+1

=4

Vậy...

Mình trình bày hơi xấu các bạn thông cảm1!

ha

dmcldt12
5 tháng 11 2018 lúc 20:47

ae tích nhiều vào nhe


Các câu hỏi tương tự
Yui Arayaki
Xem chi tiết
kiwi nguyễn
Xem chi tiết
 nguyễn hà
Xem chi tiết
nununguyen
Xem chi tiết
dấu tên
Xem chi tiết
Thuy Khuat
Xem chi tiết
bloom
Xem chi tiết
Lê Thị Hồng Vân
Xem chi tiết
Ruby
Xem chi tiết