\(\left(x+\dfrac{2}{y}\right)\left(\dfrac{y}{x}+2\right)\ge2\sqrt{\dfrac{2x}{y}}.2\sqrt{\dfrac{2y}{x}}=2.2.2=8\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(\left(x+\dfrac{2}{y}\right)\left(\dfrac{y}{x}+2\right)\ge2\sqrt{\dfrac{2x}{y}}.2\sqrt{\dfrac{2y}{x}}=2.2.2=8\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
cho các số x,y,z thoả mãn \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)
tính giá trị biểu thức A=\(\dfrac{x}{\left(y-z\right)^2}+\dfrac{y}{\left(z-x\right)^2}+\dfrac{z}{\left(x-y\right)^2}\)
Tìm \(x;y\in N\)tmãn : \(\sqrt{x}+\sqrt{y}=\sqrt{2012}\)
2, Rút gọn bt
\(P=\dfrac{x}{x-\sqrt{x}}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)
b, gpt : \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
3, cho x>1 ; y>0 , cm
\(\dfrac{1}{\left(x+1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)
Cho x;y>0
CMR: \(\dfrac{\left(x^3+8\right)\left(y^2-y+1\right)}{\left(x^2+x\right)\left(xy^2+2\right)}\ge\dfrac{1}{2}\)
Giả thiết x, y, z > 0 và xy + y2 + zx = a. Chứng minh rằng :
\(x\sqrt{\dfrac{\left(a+y^2\right)\left(a+z^2\right)}{a+x^2}}+y\sqrt{\dfrac{\left(a+z^2\right)\left(a+x^2\right)}{a+y^2}}+z\sqrt{\dfrac{\left(a+x^2\right)\left(a+y^2\right)}{a+z^2}}=2a\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xy+yz+zx=1\end{matrix}\right.\)
Tính \(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)+\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)+\left(1+y^2\right)}{1+z^2}}\)
Cho x,y>0 và xy=4.Tìm GTNN của \(Q=\dfrac{x^3}{4\left(y+2\right)}+\dfrac{y^3}{4\left(x+2\right)}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\dfrac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\dfrac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x, y > 0 và 2x > y. Chứng minh rằng : \(\left(\dfrac{1}{x}+2\right)^2.\left(\dfrac{2}{y}-\dfrac{1}{x}\right).\dfrac{2y-1}{y}\le\dfrac{81}{8}\)
x,y,z>0.Prove that:
\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)