\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\tan45\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=1\)
\(VT=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1=VP\)
Vậy đẳng thức đã được chứng minh
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3.2\sqrt{5}+9}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)=\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)=\(\sqrt{\sqrt{5}-\sqrt{5}+1}\)
=\(\sqrt{1}=1=\) tan(45)