BĐT \(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi x =y=z
BĐT \(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi x =y=z
Cm bất đẳng thức sau vs x, y, z>_0
4(x^2+y^2+z^2)>_(x+y)^2+(y+z)^2+(z+x)^2
Cm bất đẳng thức sau vs x, y, z>_0.
3(x^2+y^2+z^2)>_(x+y+z)^2
Giúp mình với
Cho x, y, z là các số thực dương thỏa mãn xy+yz+zx=3. Chứng minh bất đẳng thức: \(\dfrac{x^2}{\sqrt{x^3+8}}+\dfrac{y^2}{\sqrt{y^3+8}}+\dfrac{z^2}{\sqrt{z^3+8}}\ge1\)cho x, y, z là nghiệm bất phương trình \(\left\{{}\begin{matrix}x^2+y^2+z^2=8\\xy+yz+zx=4\end{matrix}\right.\)
Chứng minh rằng \(-\dfrac{8}{3}\) ≤ x, y, z ≤ \(\dfrac{8}{3}\)
CHO x,y,z >0 ,xyz=\(\frac{1}{2}\)
CMR:\(\frac{yz}{x^2\left(y+z\right)}\)+\(\frac{zx}{y^2\left(z+x\right)}\)+\(\frac{xy}{z^2\left(x+y\right)}\) ≥ xy+yz+zx
Cho x,y,z>0 tm\(xy+yz+zx\ge3\). C/m
\(\dfrac{x^3}{\sqrt{y^2+3}}+\dfrac{y^3}{\sqrt{z^2+3}}+\dfrac{z^3}{\sqrt{x^2+3}}\ge\dfrac{1}{2}\)
Cho ba số thực dương x,y,z. Biểu thức P=\(\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}\) có GTNN là bao nhiêu
Cho x,y,z.0, cmr:
\(\Sigma_{cyc}\frac{x}{y}\ge\sqrt{\frac{x^2+y^2+z^2}{xy+yz+zx}}\)tth
cho x,y,z > 0 thỏa mãn x + y + z = 2. Cmr:
\(\sqrt{xy^3+yz^3+zx^3}+\sqrt{x^3y+y^3z+z^3x}\le2\)