Đặt \(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
\(\Rightarrow2^2A=2^2.\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow4A=1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\)
\(\Rightarrow4A+A=\left(1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\right)+\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow5A=1-\frac{1}{2^{2004}}\)
Vì \(1-\frac{1}{2^{2004}}< 1.\)
\(\Rightarrow5A< 1\)
\(\Rightarrow A< \frac{1}{5}=0,2\)
\(\Rightarrow A< 0,2\left(đpcm\right).\)
Chúc bạn học tốt!