Chứng minh rằng tổng :
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
chứng tỏ rằng \(\frac{1}{2^2}-\frac{1}{2^{\text{4}}}+\frac{1}{2^6}-.....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
Chứng minh rằng :
S \(=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
Các bạn giúp mình nhé ! : Bạn Vũ Minh Tuấn , Nguyễn Văn Đạt , Hoàng Minh Nguyệt , Băng Băng 2k6 , và thầy Akai Haruma vào giúp mình với !!! . Cảm ơn các bạn nhiều
Chứng minh rằng :
S \(=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
Các bạn giúp mình nhé ! : Bạn Vũ Minh Tuấn , Nguyễn Văn Đạt , Hoàng Minh Nguyệt , Băng Băng 2k6 , và thầy Akai Haruma vào giúp mình với !!! . Cảm ơn các bạn nhiều
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Tính B\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2016}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2016}}\)
Tính bằng cách hợp lí
a)\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{13+\frac{13}{2}+\frac{13}{3}+\frac{13}{4}}{17-\frac{17}{2}+\frac{17}{3}-\frac{17}{4}}\)
b)\(\frac{0,125-\frac{1}{5}+\frac{1}{7}}{0,375-\frac{3}{5}+\frac{3}{7}}+\frac{\frac{1}{2}+\frac{1}{3}-0,2}{\frac{3}{4}+0,5-\frac{3}{10}}\)