\(VT=a\cdot\left(b+c\right)-a\cdot\left(b+d\right)\\ =a\cdot\left[\left(b+c\right)-\left(b+d\right)\right]\\ =a\cdot\left(b+c-b-d\right)\\ =a\cdot\left(c-d\right)=VP\)
vt=a⋅(b+c)−a⋅(b+d)=a⋅[(b+c)−(b+d)]=a⋅(b+c−b−d)=a⋅(c−d)=vp (đpcm)
\(VT=a\cdot\left(b+c\right)-a\cdot\left(b+d\right)\\ =a\cdot\left[\left(b+c\right)-\left(b+d\right)\right]\\ =a\cdot\left(b+c-b-d\right)\\ =a\cdot\left(c-d\right)=VP\)
vt=a⋅(b+c)−a⋅(b+d)=a⋅[(b+c)−(b+d)]=a⋅(b+c−b−d)=a⋅(c−d)=vp (đpcm)
cho a/b=c/d chứng minh rằng:
a)\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\) b)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
cho a,b,c,d là các số dương. cmr
a, \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}\frac{d}{d+a+b}< 2\)
b, \(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)
CMR nếu a+b/b+c =c+d/d+a thì a=c hoặc a+b+c+d =0 ( với c+d khác 0)
Giúp mình với
Bài 1 : Cho các số thực a , b ,c ∈(0;1).Chứng minh rằng nếu a+b+c>1/4 , b(1-c)>1/4 , c(1-a)>1/4
Bài 2 : Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ một đỉnh là tam giác cân tại đỉnh đó
Bài 3:Cho các số a , b , c thỏa mãn điều kiện
a+b+c>0
Và
ab+bc+ca>0
Và
abc>0
1,CM bằng phản chứng:" Nếu pt bậc 2 ax2 + bx + c = 0 thì a và c cùng dấu
2,CM bằng phản chứng: Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác
3, Cho a, b, c dương < 1. CMR ít nhất 1 trong 3 BĐT sau sai: \(a\left(1-b\right)>\frac{1}{4},b\left(1-c\right)>\frac{1}{4},c\left(1-a\right)>\frac{1}{4}\)
4, Nếu a1a2 \(\ge\) 2(b1 + b2) thì ít nhất 1 trong 2 pt x2 + a1x + b1 = 0, x2 +a2x + b2 = 0 có nghiệm
5, Cho các số a, b, c thỏa mãn: a + b + c = 0(1), ab + bc + ca > 0(2), abc > 0(3)
CMR cả 3 số đều dương
6, CM bằng phản chứng:"Nếu tam giác ABC có các đường phân giác trong BE = CF thì tam giác ABC cân".
Giúp mình nhé
Tỉ số của hai số a và b bằng \(1\frac{1}{2}\) Tìm hai số đó, biết rằng a-b=8
chứng minh bằng phản chứng :
cho a,b,c thuộc R thỏa 0<a,b,c<1
CM có ít nhất 1 trong các bất đẳng thức sau sai :
a(1-b) ≥1/4 (1) ; b(1-c) ≥1/4 (2) ; c(1-a) ≥1/4 (3)
bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau:
a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0
b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1)
bài 2: xác định tính đúng-sai của các mệnh đề sau :
a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4
bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''.
Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính đúng-sai của cả 2 mệnh đề.
b) Phát biểu mệnh đề đảo của P và chứng tỏ mệnh đề đó là đúng.Phát biểu mệnh đề dưới dạng mệnh đề tương đương
Bài 4: Xét tính đúng sai của các mệnh đề sau:
a) P: ''∀x ∈ R,∀y ∈ R: x + y = 1'' b) Q:'' ∃x ∈ R, ∃y ∈ R: x + y = 2''
Mọi người giải hộ để em đối chiếu đáp án của mình với ạ,em cảm ơn.
Cho a, b là các số hữu tỉ khác 0 và n ∈ N*. Chứng minh rằng:
A=\(a\sqrt{n}+b\sqrt{n+1}\) là số vô tỉ