(x + y)3 = x3 + 3x2y + 3xy2 + y3
=> x3 + y3
= (x + y)3 - 3x2y - 3xy2
= (x + y)3 - 3xy(x + y)
= (x + y)[(x + y)2 - 3xy]
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2)
=> đpcm
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(VP=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3=VT\)
\(\RightarrowĐPCM\)