Bài 1:
a, Cho ba số x,y,z đôi một khác nhau. Chứng minh rằng:
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
a) Cho \(x,y,z\ne0\) và \(x-y-z=0\) . Tính \(K=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\) Chứng minh \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
chứng minh nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-zx}{y\left(1-xz\right)}\).Với \(x\ne y,xyz\ne0,yz\ne1,xz\ne1\) thì xy+xz+yz=xyz(x+y+z)
Cho \(x+y+z=1\) Chứng minh \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
Chứng minh :
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b) \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
cho 3 số dương x,y,z thỏa mãn : \(x+y+z=xyz\)
CMR : \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Rút gọn : \(\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)
Bài 1: Cho biểu thức Q= \(\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)x\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\)
a) Rút gọn Q
b) Tìm x thuộc Z để Q có giá trị nguyên
Bài 2: Giải các phương trình sau:
a) \(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)
b)\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
Bài 3:
a) Cho a,b,c > 0 cm rằng:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
b) Chờ x,y,z > 0 tìm min của biểu thức:
P=\(\dfrac{x}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{x +y}\)
Giúp mình vs nha các bạn ^.^ thanks mn!!
1. Viết biểu thức dưới dạng bình phương của một tổng
\(2xy^2+x^2y^4+1\)
2, Rút gọn biểu thức :
a, \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
b, \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)