Thiếu `n>0`
`1/2^2<1/(1.2)`
`1/3^2<1/(2.3)`
`.........`
`1/n^2<1/((n-1).n)`
`=>VT<1/(1.2)+1/(2.3)+.....+1/((n-1).n)`
`=>VT<1-1/2+1/2-1/3+...+1/(n-1)-1/n=1-1/n<1`
Ta co:\(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1\left(dpcm\right)\)