\(P=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}+\frac{2009}{3^{2009}}\)
\(\Rightarrow3P=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2009}{3^{2008}}\)
\(\Rightarrow2P=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}-\frac{2009}{3^{2009}}=A-\frac{2009}{3^{2009}}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2007}}\)
\(\Rightarrow2A=3-\frac{1}{3^{2008}}< 3\Rightarrow A< \frac{3}{2}\)
\(\Rightarrow2P=A-\frac{2009}{2^{2009}}< A< \frac{3}{2}\Rightarrow P< \frac{3}{4}\)