Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Agami Raito

Chứng minh : \(\sqrt{1^3+2^3+3^3+...+2019^3}=1+2+3+...+2019\)

Trần Minh Hoàng
8 tháng 6 2019 lúc 9:44

Để chứng minh được đẳng thức đó, ta cần chứng minh đẳng thức: 13 + 23 + 33 + ... + 20193 = (1 + 2 + 3 + ... + 2019)2

Ta có:

(1 + 2 + 3 + ... + 2019)2
\(=\left(\frac{2019.2020}{2}\right)^2\)
\(=\left(\frac{1.2}{2}\right)^2+\left[\left(\frac{2.3}{2}\right)^2-\left(\frac{1.2}{2}\right)^2\right]+\left[\left(\frac{3.4}{2}\right)^2-\left(\frac{2.3}{2}\right)^2\right]+...+\left[\left(\frac{2019.2020}{2}\right)^2-\left(\frac{2018.2019}{2}\right)^2\right]\left(1\right)\)

Mặt khác, với số tự nhiên n lớn hơn 1 ta có:

\(\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{\left(n-1\right)n}{2}\right)^2=\left(\frac{n\left(n+1\right)}{2}-\frac{\left(n-1\right)n}{2}\right)\left(\frac{n\left(n+1\right)}{2}+\frac{\left(n-1\right)n}{2}\right)=\frac{2n}{2}.\frac{2n.n}{2}=n^3\)

Do đó biểu thức (1) chính bằng 13 + 23 + 33 + ... + 20193

Vậy ta có đpcm


Các câu hỏi tương tự
Yêu các anh như ARMY yêu...
Xem chi tiết
Lê Gia Bảo
Xem chi tiết
Phạm Tuấn Long
Xem chi tiết
Ba Dao Mot Thoi
Xem chi tiết
Vân Trần Thị
Xem chi tiết
vvvvvvvv
Xem chi tiết
Gay\
Xem chi tiết
poppy Trang
Xem chi tiết
Hoaa
Xem chi tiết