Chứng minh rằng với mọi tam giác ABC ta có:
a) \(SinA+SinB+SinC\le Cos\dfrac{A}{2}+Cos\dfrac{B}{2}+Cos\dfrac{C}{2}\)
b) \(CosA.CosB.CosC\le Sin\dfrac{A}{2}.Sin\dfrac{B}{2}.Sin\dfrac{C}{2}\)
Rút gọn các biểu thức sau:
a, \(A=\sin^2\left(a-b\right)+\sin^2b+2\sin\left(a-b\right).\sin b.\cos a\)
b, \(B=\cos^2a+\cos^2\left(a+b\right)-2\cos a.\cos b.\cos\left(a+b\right)\)
Mọi người giúp mình với ạ!!!
Chứng minh rằng những biểu thức sau không phụ thuộc vào đối số
\(E=\dfrac{cos^2x-sin^2y}{sin^2x.sin^2y}-cot^2x.cot^2y\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
\(\frac{\sin^3a+\cos^3a}{\sin a+\cos a}=1-\sin a.\cos a\)
MỌI NGƯỜI chứng minh hộ mình câu này với
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
B=\(\tan1.tan2.tan3.tan89\)
\(C=\sin^254+sin^236-3sin^2126+.......+\cos^3126+\cos^354-3\cos^254\)
\(D=sin^21+sin^22+sin^23+......+sin^289+sin^290\)
p/s: mí bạn giúp đỡ giùm....tớ mới học dạng này lên còn hơi bỡ ngỡ ....đang cần gấp lắm ag!!
Cho \(sina=\dfrac{3}{5},cosb=-\dfrac{5}{13}\)và \(\dfrac{\pi}{2}< a,b< \pi\)
Tính \(cos\dfrac{a}{2};sin\dfrac{b}{2};tan\left(a+b\right);sin\left(a-b\right)\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
\(F=\dfrac{\sin\alpha-2\sin\left(2\alpha\right)+\sin\left(3\alpha\right)}{\cos\alpha-3\cos\left(2\alpha\right)+\cos\left(3\alpha\right)}\)
Mn rút gọn giùm mình biểu thức này với. Mình cảm ơn ạ :<
Chứng minh rằng : \(sin\left(a+b\right).cosb-sin\left(a+c\right).cosc=sin\left(b-c\right).cos\left(a+b+c\right)\)
cho tam giác ABC . chứng minh:
a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C
b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)
c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)
d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)
f, sin2A+sin2B+sin2C= 4sinAsinBsinC
g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC