Bài 5: Lũy thừa của một số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Trúc Vi

Chứng minh rằng:Nếu S=1/22-1/24+1/26-...1/24n-2-1/24n+...+1/22002-1/22004,thì S<0,2

Lê Thị Thục Hiền
22 tháng 9 2018 lúc 21:20

Có S=\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

=>\(\dfrac{1}{2^2}S=\dfrac{1}{2^2}\)\(\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)

=> \(\dfrac{1}{2^2}\)S= \(\dfrac{1}{2^4}-\dfrac{1}{2^6}+\dfrac{1}{2^8}-...+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+...+\dfrac{1}{2^{2004}}-\dfrac{1}{2^{2006}}\)

+S =\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

=> \(\dfrac{5}{4}\)S= \(\dfrac{1}{2^2}\)-\(\dfrac{1}{2^{2006}}\)

=> S= \(\dfrac{\left(\dfrac{1}{2^2}-\dfrac{1}{2^{2006}}\right)}{\dfrac{5}{2^2}}=\dfrac{\dfrac{1}{2^2}}{\dfrac{5}{2^2}}-\dfrac{\dfrac{1}{2^{2006}}}{\dfrac{5}{2^2}}=\dfrac{1}{5}-\dfrac{1}{2^{2004}.5}=0.2-\dfrac{1}{2^{2004}.5}\)

=> S <0,2

Vậy S <0,2(đpc/m)


Các câu hỏi tương tự
Fʊʑʑʏツ👻
Xem chi tiết
Vân vui vẻ
Xem chi tiết
Le Khanh Yen
Xem chi tiết
Lê Thị Hồng Ngát
Xem chi tiết
Nguyễn Phúc Nguyên
Xem chi tiết
Lê Thị Hồng Vân
Xem chi tiết
Nguyễn Lâm Nguyên
Xem chi tiết
Nguyễn Lê Hoàng
Xem chi tiết
Nguyễn Nam
Xem chi tiết