Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Hảo

Chứng minh rằng:\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}\dfrac{z}{4a-4b+c}\)

Thì:\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+x}\)

Nguyễn Thị Bích Thủy
23 tháng 1 2018 lúc 18:29

Đặt A= \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
Ta có:
\(A=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\dfrac{x+2y+z}{9a}\)
\(A=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}=\dfrac{2x+y-z}{9b}\)\(A=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}=\dfrac{4x-4y+z}{9c}\)\(\Rightarrow A=\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)
\(\Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2x+y-z}{b}=\dfrac{4x-4y+z}{c}\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)


Các câu hỏi tương tự
yhe
Xem chi tiết
Ngô Thu Hiền
Xem chi tiết
ITACHY
Xem chi tiết
Thuy Khuat
Xem chi tiết
nununguyen
Xem chi tiết
Học đi
Xem chi tiết
Học đi
Xem chi tiết
Trần Khởi My
Xem chi tiết
Bất
Xem chi tiết