Vì : \(a^3=b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
Áp dụng tính chất giao hoán nên :
\(\Rightarrow a^3+b^3=\left(a+b\right).\left(a^2-b^2+ab\right)\)
\(\Rightarrow a^3+b^3=\left(a+b\right).\left[\left(a-b\right)^2+ab\right]\)
\(\RightarrowĐpcm\)
Ta có
\(\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left[a^2+b^2+2ab-3ab\right]\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\) (đpcm)
tach hang dang thuc hoac bien doi ve trai hoac ve faj