Bài 1 :
Ta có :
\(a^2+b^2\ge2ab\)
\(;a^2+1\ge2a\)
\(;b^2+1\ge2b\)
\(\Rightarrow a^2+b^2+a^2+b^2+2\ge2ab+2a+2b\)
\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)
Bài 2 :
\(A=x^2-6x+10=\left(x-3\right)^2+1>0\) với mọi x
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x