1. (x-1)(\(x^2\)+x+1)= x(\(x^2\)+x+1) -1.(\(x^2\)+x+1)=x.\(x^2\)+x.x+x.1 -\(x^2\)-x-1=\(x^3\)+\(x^2\)+x-\(x^2\)-x-1=\(x^3\)-1
vậy (x-1)(\(x^2\)+x+1)=\(x^3\)-1
b) n(2n-3)-2n(n+1)
=n.2n -n.3 -2n.n-2n.1
=2\(n^2\)-3n-2\(n^2\)-2n
=-5n \(⋮\)5 với mọi số nguyên n
Vậy n(2n-3)-2n(n-1) chia hết cho 5 với mọi số nguyên n