Bổ sung ĐK : a , b , c , d dương
a4 + b4 + c4 + d4 ≥ 4abcd
Áp dụng BĐT Cô - si : x4 + y4 ≥ 2x2y2 ( x > 0 ; y > 0 )
Ta có : a4 + b4 ≥ 2a2b2 ( 1)
b4 + c4 ≥ 2b2c2 ( 2)
c4 + d4 ≥ 2c2d2 ( 3)
a4 + d4 ≥ 2a2d2 ( 4)
Từ ( 1; 2; 3; 4) ⇒ a4 + b4 + c4 + d4 ≥ a2b2 + b2c2 + c2d2 + a2d2 (***)
Lại Áp dụng BĐT Cô - si : x2 + y2 ≥ 2xy ( x > 0 ; y > 0 )
Ta có : a2b2 + c2d2 ≥ 2abcd ( *)
a2d2 + b2c2 ≥ 2abcd ( ** )
Từ : ( * ; ** ; ***) ⇒ đpcm
đề bài lạ nhỉ đáng lẽ phải là \(a^4+b^4+c^4+d^4\ge4abcd\) chứ nhỉ
\(a^4+b^4+c^4+d^4\Rightarrow4\sqrt{4\left(a^4.b^4.c^4.d^4\right)}=4abcd\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=d\)
Dùng cosi