Có: \(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\)
\(\left(\sqrt{a-b}\right)=a-b=a+b-2b\)
Vì: \(a>b>0\rightarrow ab>b^2\rightarrow2\sqrt{ab}>2\sqrt{b^2}\rightarrow2\sqrt{ab}>2b\)
\(\Rightarrow-2\sqrt{ab}< -2b\Rightarrow a-2\sqrt{ab}+b< a-2b+b\)
\(\Rightarrow\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
Nhớ tick mik nha
Có \(a>b>0\)
<=> \(\sqrt{a}>\sqrt{b}>0\)
Với a>b>0 có: \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\) (1)
<=> \(a+b-2\sqrt{ab}< a-b\)
<=> \(0< a-b-a-b+2\sqrt{ab}\)
<=> \(0< -2b+2\sqrt{ab}\)
<=> \(0< \sqrt{ab}-b\)
<=> \(0< \sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)(luôn đúng vì \(\sqrt{a}>\sqrt{b}>0\))
Vậy (1) đc CM