từ x+y+z=a và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=a\)
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{xyz}\)
<=>(xy+yz+xz)(x+y+z)=xyz
Từ đó bạn nhân phá ngoặc rồi biến phương trình trên về dạng:
(x+y)(y+z)(z+x)=0
=> x=-y =>z=a
hoặc y=-z =>x=a
hoặc z=-x =>y=a.
Mik nghĩ vậy nhé!