các bạn ơi, giúp mình với:
Cho \(x\ge y\ge z>0\)
Chứng minh rằng \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\ge x^2+y^2+z^2\)
cho x,y,z>0 chứng minh: x^3y^2+y^3/z^2+z^3/x^2>=x^2/y+y^2/z+z^2/x
Viết các biểu thức sau dưới dạng tổng:
(x+y+z+t).(x+y-z-t)
(x-y+z-t).(x-y-z+t)
(x+2y+3z+t)^3
(x^2+2x-1)^2
toan 8 cho (x+y)(x+z)+(y+z)(y+x)=2(z+x)(z+y) chung minh z^2=x^2+y^2/2
a) Cho \(x,y,z\ne0\) và \(x-y-z=0\) . Tính \(K=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\) Chứng minh \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
cho x,y,z là các số thực dương khác 1 và xyz=1. Chứng minh rằng \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
1. cho x,y,z>0. Chứng minh \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\)
Tìm x,y,z biết rằng 3x/8=3y/64=3z/216 và 2x^2+2y^2-z^2=1