Nhân cả tử và mẫu vế trái với \(cos2x.cosx\) ta được:
\(\frac{sin2x.sinx}{sin2x.cosx-cos2x.sinx}=\frac{sin2x.sinx}{sin\left(2x-x\right)}=\frac{sin2x.sinx}{sinx}=sin2x\)
Nhân cả tử và mẫu vế trái với \(cos2x.cosx\) ta được:
\(\frac{sin2x.sinx}{sin2x.cosx-cos2x.sinx}=\frac{sin2x.sinx}{sin\left(2x-x\right)}=\frac{sin2x.sinx}{sinx}=sin2x\)
Câu 1 : chứng minh rằng : cot x-tanx = 2cot2x
Câu 2 : chứng minh rằng : \(\frac{cos^2x-sin^2x}{1+sin2x}=\frac{1-tanx}{1+tanx}\)
Chứng minh
a) \(2sin\left(\frac{\pi}{4}+a\right)sin\left(\frac{\pi}{4}-a\right)=cos2a\)
b) \(tanx-\frac{1}{tanx}=-\frac{2}{tan2x}\)
Chứng minh các đẳng thức sau:
(với x là giá trị để biểu thức có nghĩa)
1/ \(\frac{\sin2x-\sin4x}{1-\cos2x+\cos4x}=-\tan2x\)
2/ \(\frac{\sin4x-\sin2x}{1-\cos2x+\cos4x}=\tan2x\)
c1 : chứng minh \(\left(\frac{1}{cos2x}+1\right)tanx=tan2x\)
c2 : chứng minh \(\frac{cos7a+cos5a+cos3a+cosa}{sin7a+sin5a+sin3a+sina}=cot4a\)
CHỨNG MINH ĐẲNG THỨC
a/ Chứng minh rằng: \(\frac{sin4x-sin2x}{1-cos2x+cos4x}=tanx\)( với x là giá trị để biểu thức có nghĩa)
b/ Cho x ≠ k\(\frac{\pi}{4}\) , kϵ Z . Chứng minh đẳng thức sau:\(\frac{1-cos4x}{sin4x}=tanx\)
Bài 1 :Chứng minh đẳng thức :
a. \(\frac{1-2sin^2x}{1-tanx}=\frac{1+sin2x}{1+tanx}\)
b. \(\frac{cot^2\frac{x}{2}-cot^2\frac{3x}{2}}{cos^2\frac{x}{2}.cosx.\left(1+cot^2\frac{3x}{2}\right)}=8\)
Bài 2:Cho sin(2a+b) = 5sinb . CMR: \(\frac{2tan\left(a+b\right)}{tana}=3\)
Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)
Chứng minh :
a) 2(1-sinx)(1+cosx) = (1-sinx+cosx)2
b) 1-cos2x/sin2x = tanx
c) 1+cotx+cot2x+cot3x = cosx+sinx/sin3x
Câu 1: Chứng minh
\(\cos5x.\cos3x+\sin7x.\sin x=\cos2x.\cos4x\)
\(\frac{1-2\sin^22x}{1-\sin4x}=\frac{1+\tan2x}{1-\tan2x}\)
Câu 2:Rút gọn biểu thức
\(2\cos x-3\cos\left(\pi-x\right)+5\sin\left(\frac{7\pi}{x}-x\right)+cot\left(\frac{3\pi}{2}-x\right)\)