\(\frac{2}{sin4x}-tan2x=\frac{2}{2sin2x.cos2x}-\frac{sin2x}{cos2x}=\frac{1}{cos2x}\left(\frac{1}{sin2x}-sin2x\right)\)
\(=\frac{1}{cos2x}\left(\frac{1-sin^22x}{sin2x}\right)=\frac{1}{cos2x}\frac{cos^22x}{sin2x}=\frac{cos2x}{sin2x}=cot2x\)
\(\frac{2}{sin4x}-tan2x=\frac{2}{2sin2x.cos2x}-\frac{sin2x}{cos2x}=\frac{1}{cos2x}\left(\frac{1}{sin2x}-sin2x\right)\)
\(=\frac{1}{cos2x}\left(\frac{1-sin^22x}{sin2x}\right)=\frac{1}{cos2x}\frac{cos^22x}{sin2x}=\frac{cos2x}{sin2x}=cot2x\)
chứng minh biểu thức sau đây không phụ thuộc vào y:
A= \(\frac{1}{sin2y}+\frac{1}{sin4y}+\frac{1}{sin8y}-coty+cot8y\)
B= \(\frac{1}{sin4x}+\frac{1}{sin8x}+\frac{1}{sin16x}-cot2x+cot16x\)
Câu 1 : Chứng minh rằng : 3 - 4sin2x = 4cos2x - 1Câu 2 : Chứng minh rằng : cos4x - sin4x = 2cos2x - 1 = 1 - 2sin2xCâu 3 : Chứng minh rằng : sin4x + cos4x = 1 - 2sin2xCos2x
CMR :
a) \(\frac{sinx+sin3x+sin4x}{1+cosx+cos3x+cos4x}=tan2x\)
b) \(\frac{sin^22x+2cos\left(3\pi+2x\right)-2}{-3+4cos2x+cos\left(4x-\pi\right)}=\frac{1}{2}cot^4x\)
Chứng minh rằng:
\(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)
Chứng minh biểu thức sau đây không phụ thuộc vào biến số
\(A=\frac{tan^2x-1}{2}cotx+cos4xcot2x+sin4x\)
chứng minh rằng
1) \(tanx=\frac{1-cos2x}{sin2x}\)
2)\(\frac{sin\left(60^0-x\right).cos\left(30^{0^{ }}-x\right)+cos\left(60^{0^{ }}-x\right).sin\left(30^{0^{ }}-x\right)}{sin4x}=\frac{1}{2sin2x}\)
3) \(4cos\left(60^0+a\right).cos\left(60^0-a\right)+2sin^2a=cos2a\)
Chứng minh: sinx.\(cos^3x-sin^3x.cosx=\dfrac{sin4x}{4}\)
CM các đẳng thức:
a) \(\frac{1+sin4x+cos4x}{1-sin4x+cos4x}=tan\left(2x+\frac{15}{4}\right)\)
b) \(\left(sin5x-cos5x\right)^2-\left(sin3x+cos3x\right)^2=-2sin8x.cos2x\)
cho tam giác ABC, chứng minh rằng: \(sinA+sinB-sinC=4.sin\frac{A}{2}.sin\frac{B}{2}.cos\frac{C}{2}\)