Cho đa thức \(f\left(x\right)=x^2+mx+n\) với \(m,n\in Z\). Chứng minh rằng tồn tại số nguyên k để \(f\left(k\right)=f\left(2021\right).f\left(2022\right)\)
\(\forall n\ge1,n\in N,k\in N,\) k lẻ
cm;\(k^{2^n}-1⋮2^{n+2}\)
Cho p là số nguyên tố lẻ. Chứng minh rằng với mọi \(k\in N\), ta luôn có:
\(S=1^{2k+1}+2^{2k+1}+...+\left(p-1\right)^{2k+1}\) chia hết cho p
Cho k là số nguyên dương bất kì. Chứng minh bất đẳng thức sau \(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
cho k là số tự nhiên khác 0,số tự nhiên a gồm 2k chữ số 1, số tự nhiên b gồm k chữ số 2. chứng minh rằng a-b là một số chính phương
là số nguyên tố
Chứng minh rằng số K=(\(\sqrt[3]{2}+1\) )\(\sqrt[3]{\dfrac{\sqrt[3]{2}-1}{3}}\) là một số nguyên
Cho (O) đường kính MN. Trên (O) lấy 2 điểm B, C sao cho BM=MC (B khác C), A nằm trên cung BC, MA cắt NC tại K. Chứng minh: B và C không thể nằm cùng 1 phía trên 1 nửa đường tròn bờ là MN
Chứng minh rằng với bất kì số nguyên tố p. \(p^{p+1}+\left(p+1\right)^p\) không là số chính phương