Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Minh

Chứng minh rằng đồ thị hàm số \(y=mx^3+2mx^2+\left(1-m\right)x+3-2\) luôn đi qua ba điểm cố định.

Chứng minh ba điểm cố định đó thẳng hàng.

Thục Trinh
24 tháng 10 2021 lúc 21:23

Đề thiếu m ở 3 hoặc -2 rồi ạ. 

Thục Trinh
24 tháng 10 2021 lúc 21:32

\(y=mx^3+2mx^2+\left(1-m\right)x+3-2m\)

\(\Leftrightarrow\left(x^3+2x^2-x-2\right)m+\left(x-y+3\right)=0\)

Gọi \(\left(x_0\text{;}y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua. 

\(\Leftrightarrow\left\{{}\begin{matrix}x_0^3+2x_0^2-x_0-2=0\left(a\right)\\x_0-y_0+3=0\end{matrix}\right.\)

PT (a) có 3 nghiệm phân biệt nên đồ thị hàm số luôn đi qua 3 điểm cố định. 

Giải pt ra 3 điểm đó là \(A\left(1\text{;}4\right),B\left(-1\text{;}2\right),C\left(-2\text{;}1\right)\)

\(\overrightarrow{AB}=\left(-2\text{;}-2\right)\)

\(\overrightarrow{AC}=\left(-3\text{;}-3\right)\)

\(\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}\) => Vector AB và vector AC cùng hướng. 

Vậy 3 điểm A, B, C thẳng hàng. 


Các câu hỏi tương tự
Huyền Thương
Xem chi tiết
Hải Yến Lê
Xem chi tiết
đặng thị thu thủy
Xem chi tiết
Tiểu Bạch Kiểm
Xem chi tiết
Tiểu Bạch Kiểm
Xem chi tiết
Phùng Đức Hậu
Xem chi tiết
đặng thị thu thủy
Xem chi tiết
Thuhien Do
Xem chi tiết
Nguyễn Bảo
Xem chi tiết