a:
b: Phương trình OA có dạng là y=ax+b
Theo đề, ta có hệ:
0a+b=0 và a+b=1
=>b=0 và a=1
=>y=x
Vì (d)//OA nên (d): y=x+b
Thay x=2 và y=0 vào (d), ta được:
b+2=0
=>b=-2
=>y=x-2
PTHĐGĐ là:
-x^2-x+2=0
vì a*c<0
nên (P) luôn cắt (d) tại hai điểm phân biệt
a:
b: Phương trình OA có dạng là y=ax+b
Theo đề, ta có hệ:
0a+b=0 và a+b=1
=>b=0 và a=1
=>y=x
Vì (d)//OA nên (d): y=x+b
Thay x=2 và y=0 vào (d), ta được:
b+2=0
=>b=-2
=>y=x-2
PTHĐGĐ là:
-x^2-x+2=0
vì a*c<0
nên (P) luôn cắt (d) tại hai điểm phân biệt
Cho hàm số y = -x2 có đồ thị (P) và A(1;1) ; B(2;0)
a) Vẽ (P)
b) Gọi d là đường thẳng đi qua B và song song với OA. Chứng minh rằng d cắt (P) tại hai điểm phân biệt C và D. Tính diện tích tam giác ACD.
Trên mặt phẳng tọa độ Oxy cho hàm số y = -2x + 4 có đồ thị là đường thẳng (d).
a, Tìm tọa độ giao điểm của đường thẳng (d) với hai trục tọa độ.
b, Tìm trên (d) điểm có hoành độ bằng tung độ.
trong mặt phẳng tọa độ oxy cho parabol (p) y=3/2x^2 và đường thẳng (d):y=mx+2
a) vẽ đồ thị (p)
b) tìm tất cả các giá trị của m để (d)cắt (p) tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1^2 +x2^2 -x1x2 =40
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):\(y=2x-m+1\) (với m là tham số) và parabol (P): .
a) Tìm m để đường thẳng (d) đi qua điểm A (–1; 3).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho \(x_1x_2\left(y_1+y_2\right)+6=0\) .
Câu 2: Cho hàm số \(y=f\left(x\right)=\dfrac{1}{2}x^2\) có đồ thị là (P)
a) Tính f(-2)
b) Vẽ đồ thị (P) trên mặt phẳng với hệ trục tọa độ Oxy
c) Cho hàm số y = 2x + 6 (d). Tìm tọa độ giao điểm của hai đồ thị (P) và (d)
Câu 3: Cho x1,x2 là hai nghiệm của phương trình x2 - 2x - 1 = 0
Tính giá trị của biểu thức P = (x1)3 + (x2)3
Trong mặt phẳng tọa độ Oxy,cho đồ thị hàm số y=f(x)=x2
1)Tính f(-1);f(3)
2)Cho A(-1;1),B(3;9) nằm trên đồ thị hàm số y=x2.Gọi M là điểm thay đổi trên đồ thị hàm số y=x2 và có hoành độ là m(-1<m<3).Tìm m để tam giác ABM có điện tích lớn nhất
P/s:Mọi người giúp em câu 2 với !!
Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2 và đường thẳng (d): y= \(2mx-2m+3\) (m là tham số). Chứng minh rằng (P) và (d) cắt nhau tại hai điểm phân biệt với mọi m
Cho hàm số y=ax2 (P) (a khác 0) đi qua điểm A(1;2)
a) xác gđịnh a và vẽ đồ thị hàm số vừa tìm dc
b) đường thẳng y= -x + b cắt (P) tại 2 điểm A và B. Xác định b và vẽ tọa độ điểm B
c) cho đường thẳng (d): y= mx - m2 - \(\dfrac{3}{2}\)m -\(\dfrac{3}{4}\). Chứng minh (d) và (P) không cắt nhau với mọi giá trị m
Trên mặt phẳng Oxy, cho đường thẳng (d): y = -4 + m2 - 2 và parabol (P): y = x2
a) Chứng minh đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi m
b) Gọi x1, x2 là hoành độ hai giao điểm của (d) và (P). Tìm m để x1 ≤ 0 < x2