Ta có:
\(\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{3}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}\)
\(.............................\)
\(\sqrt{99}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{100}=\sqrt{100}\Rightarrow\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)
Cộng từng vế của các BĐT trên ta được:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)
\(=\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)
Vậy \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\) (Đpcm)