Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Harry Crab

Chứng minh rằng: \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{70}>\dfrac{4}{3}\)

Hoang Hung Quan
27 tháng 2 2017 lúc 21:11

Đặt \(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{60}\right)+...+\frac{1}{70}\)

Nhận xét:

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+...+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}\)

\(\Rightarrow A>\frac{4}{3}\)

Vậy \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}>\frac{4}{3}\) (Đpcm)

Ngô Tấn Đạt
27 tháng 2 2017 lúc 21:07

\(A=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{70}\\ =\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\right)+\left(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{30}\right)+\left(\dfrac{1}{30}+\dfrac{1}{31}+....+\dfrac{1}{60}\right)+....+\dfrac{1}{70}\\ \)

\(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}=\dfrac{1}{2}\)

\(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+....+\dfrac{1}{30}=\dfrac{10}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{30}+\dfrac{1}{31}+....+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{30}{60}=\dfrac{1}{2}\)

\(\Rightarrow A>\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{61}+...+\dfrac{1}{70}>\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{4}{3}\)

Chúc bạn học tốt !!!!!!


Các câu hỏi tương tự
Ngọc Hằng
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
Lê Hải Yến
Xem chi tiết
Nguyễn Thành Đăng
Xem chi tiết
Đỗ Thị Thuỳ trang
Xem chi tiết
Kaname Madoka
Xem chi tiết
Trần Thị Hoàn
Xem chi tiết
Walker Trang
Xem chi tiết
Thi Hữu Nguyễn
Xem chi tiết