Ta có:
a2+2ab+b2
=(a2+ab)+(b2+ab)
=a(a+b)+b(a+b)
=(a+b)(a+b)
=(a+b)2
\(\left(a+b\right)^2=a^2+2ab+b^2\) (áp dụng hằng đẳng thức bình phương của một tổng)
\(\Rightarrowđpcm\)
vt=(a+b)(a+b)
=a^2+ab+ab+b^2
=a^2+2ab+b^2
Ta có:
a2+2ab+b2
=(a2+ab)+(b2+ab)
=a(a+b)+b(a+b)
=(a+b)(a+b)
=(a+b)2
\(\left(a+b\right)^2=a^2+2ab+b^2\) (áp dụng hằng đẳng thức bình phương của một tổng)
\(\Rightarrowđpcm\)
vt=(a+b)(a+b)
=a^2+ab+ab+b^2
=a^2+2ab+b^2
a2 + b2 + c2-ab-bc-ca = 0, hãy chứng minh rằng a = b = c.
Cho a+b+c=0 ; \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=0. Chứng minh rằng: a2+b2+c2=1
Chứng minh đẳng thức:
a) \(\dfrac{a}{b}\) + \(\dfrac{b}{a}\) ≥ 2 (a,b > 0)
b) 2(a2 + b2) ≥ (a + b)2
Chứng minh các bất đẳng thức:
a) (\(\dfrac{a+b}{2}\))2 ≥ \(\dfrac{a^2+b^2}{2}\)
b) (a10 + b10)(a2 + b2) ≥ (a8 + b8)(a4 + b4)
Chứng minh các bất đẳng thức:
a) \(\dfrac{a^2+a+1}{a^2-a+1}\) > 0
b) a2 + b2 + c2 + 3 ≥ 2(a + b + c)
a) Cho các số a, b, c thỏa mãn:a + b + c = 3/2. Chứng minh rằng: a2 + b2 + c2 ≥ 3/4.
b) Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 2xy – 6x – 8y + 2028?
Chứng minh rằng: Nếu \(a^2+b^2=2ab\) thì a=b
cho a+b+c=0 và a≠0,b≠0,c≠0 tính M
M=a2/a2-b2-c2 +b2/b2-c2-a2 +c2/c2-a2-b2
cho a,b,c ∈ R, b≠c và a2+b2=(a+b-c)2
CMR:a2+(a-c)2/b2+(b-c)2=a-c/b-c