\(a,b)\)Ta có: \(\left(a\pm b\right)^2\)
\(=\left(a\pm b\right)\left(a\pm b\right)\)
\(=a^2\pm ab\pm ab+b^2\)
\(=a^2\pm ab+b^2\)
\(c)\)\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
a.) \(\left(a+b\right)^2=\left(a+b\right).\left(a+b\right)=a^2+ab+ba+b^2=a^2+2ab+b^2\)
b.) \(\left(a-b\right)^2=\left(a-b\right).\left(a-b\right)=a^2-ab-ba+b^2=a^2-2ab+b^2\)
c.) \(\left(a-b\right).\left(a+b\right)=a^2+ab-ba-b^2=a^2-b^2\)