a) ta có : \(\left(1-2x\right)\left(x-1\right)-5=x-1-2x^2+2x-5\)
\(=-2x^2+3x-6=-\left(2x^2-3x+6\right)=-\left(\left(\sqrt{2}x\right)^2-2.\sqrt{2}.\dfrac{3}{2\sqrt{2}}x+\left(\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)\)
\(=-\left(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)
ta có : \(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) với mọi \(x\)
\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}< 0\) với mọi \(x\)
vậy \(\left(1-2x\right)\left(x-1\right)-5< 0\) (đpcm)
b) ta có : \(-x^2-y^2+2x+2y-3\)
\(=\left(-x^2+2x-1\right)+\left(-y^2+2y-1\right)-1\)
\(=-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-1=-\left(x-1\right)^2-\left(y-1\right)^2-1\)
ta có : \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge\forall x\\\left(y-1\right)^2\ge\forall y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\left(x-1\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\)
\(\Rightarrow-\left(x-1\right)^2-\left(y-1\right)^2\le0\) với mọi \(x;y\)
\(\Leftrightarrow-\left(x-1\right)^2-\left(y-1\right)^2-1\le-1< 0\) với mọi \(x;y\)
vậy \(-x^2-y^2+2x+2y-3< 0\) (đpcm)
\(a,A=\left(1-2x\right)\left(x-1\right)-5\)
\(=x-1-2x^2+2x-5\)
\(=-2x^2+3x-6\)
\(=-\left(2x^2-3x+\dfrac{9}{8}\right)-\dfrac{39}{8}\)
\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\dfrac{3}{2\sqrt{2}}+\left(\dfrac{3}{2\sqrt{2}}\right)^2\right]-\dfrac{39}{8}\)
\(=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)
Ta có :
\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le-\dfrac{39}{8}\)
Hay A \(\le-\dfrac{39}{8}\)
Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2=0\)
\(\Leftrightarrow\sqrt{2}x-\dfrac{3}{2\sqrt{2}}=0\) \(\Leftrightarrow\sqrt{2}x=\dfrac{3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{3}{2\sqrt{2}}:\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
Vậy \(Min_A=-\dfrac{39}{8}\Leftrightarrow x=\dfrac{3}{4}\)
a) ( 1 - 2x ).( x - 1) -5
= x - 1 - 2x2 + 2x -5
= x - 1 - x2 - x2 + 2x -\(\dfrac{1}{4}+\dfrac{19}{4}\)
= - ( x2 - 2x +1) - [x2 - 2.\(\dfrac{1}{2}\)x + ( \(\dfrac{1}{2}\))2 ] + \(\dfrac{19}{4}\)
= -( x - 1)2 -( x - \(\dfrac{1}{2}\))2 + \(\dfrac{19}{4}\)
Do : -( x - 1)2 =< 0 ; -( x - \(\dfrac{1}{2}\))2 =< 0
--> ( 1 - 2x ).( x - 1) -5 =< -5 < 0 ( ĐPCM)
b) - x2 - y2 + 2x + 2y -3
= - x2 + 2x - 1 - y2 + 2y -1 -1
= - ( x2 - 2x +1) -( y2 - 2y + 1) -1
= -( x - 1)2 - ( y - 1)2 - 1
Do : -( x - 1)2 nhỏ hơn hoặc bằng 0
- ( y - 1)2 nhỏ hơn hoặc bằng 0
--> - x2 - y2 + 2x + 2y -3 =< -5 < 0 ( đpcm)
P/s : Chỗ =< là nhỏ hơn hoặc bằng nhé
Câu kết luận tớ nhầm ở chỗ : =< - 3 < 0 nha
mk nhầm đề bài nha bn nhg bn cx có thể tự suy ra ,mk chỉ sai đoạn cuối thôi