MÌNH CŨNG ĐANG THẮC MẮC CÂU NÀY
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
MÌNH CŨNG ĐANG THẮC MẮC CÂU NÀY
a)Cho A= \(\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2021}{2015}\)
Chứng minh A>6
b)Cho C=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+....+\dfrac{1}{3^{2010}}\)
Chứng minh rằng C<1
Cho D=\(\dfrac{1}{1^2.2^3}+\dfrac{5}{2^2.3^3}+\dfrac{7}{3^2.4^2}+.....+\dfrac{4019}{2009^2.2010^2}\)
Chứng minh rằng D<1
mấy bạn giúp mình nha. Mình cần gấp lắm TT^TT
Các bạn ơi giúp mình vs T-T
1) A = \(\dfrac{15}{24}+\dfrac{7}{21}+\dfrac{9}{34}-1\dfrac{15}{17}+\dfrac{2}{3}\)
2) B = \(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)-28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)\)
3) C = \(25.\left(-\dfrac{1}{3}\right)^3+\dfrac{1}{5}-2.\left(-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\)
4) D = \(\left(-2\right)^3.\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
5) E = \(5\sqrt{6}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
chứng minh rằng
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+........+\dfrac{1}{\sqrt{100}}>10\)
Chứng minh rằng mỗi đa thức sau không có nghiệm
a, x2 - x + 1
b, x4 +2x2 +1
c, x8 -x5 + x2 -x + 1
Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.
I. Tính
1) (1+\(\dfrac{2}{3}\)-\(\dfrac{1}{4}\)). 0,8- \(\dfrac{3}{4}\))\(^2\)
2) (2\(^2\): \(\dfrac{4}{3}\)-\(\dfrac{1}{2}\)).\(\dfrac{6}{5}\)-17
3)24\(\dfrac{1}{7}\):\(\dfrac{-3}{5}\)-33\(\dfrac{1}{7}\):\(\dfrac{-3}{5}\)
cho đa thức f(x)=ax^2+bx+c chứng minh rằng nếu 13a+3b+c lớn hơn 0 thì f(1) và f(5) không cùng nhận giá trị âm
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
Cho: a;b;c;d>0. Chứng minh rằng: \(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)