Ôn tập chương Biểu thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kudo shinichi

Cho: a;b;c;d>0. Chứng minh rằng: \(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)

 Mashiro Shiina
1 tháng 5 2018 lúc 14:47

Áp dụng bđt AM-GM ta có:

\(\dfrac{a^2}{4}+b^2\ge2\sqrt{\dfrac{a^2b^2}{4}}=\dfrac{2ab}{2}=ab\)

\(\dfrac{a^2}{4}+c^2\ge2\sqrt{\dfrac{a^2c^2}{4}}=\dfrac{2ac}{2}=ac\)

\(\dfrac{a^2}{4}+d^2\ge2\sqrt{\dfrac{a^2d^2}{4}}=\dfrac{2ad}{2}=ad\)

\(\dfrac{a^2}{4}+1\ge2\sqrt{\dfrac{a^2}{4}}=\dfrac{2a}{2}=a\)

Cộng theo vế: \(a^2+b^2+c^2+d^2+1\ge ab+ac+ad+a=a\left(b+c+d+1\right)\)Dấu "=" xảy ra khi: \(a=2;b=c=d=1\)

Nhã Doanh
1 tháng 5 2018 lúc 18:42

\(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4\ge4ab+4ac+4ad+4a\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4-4ab-4ac-4ad-4a\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-2ac+4c^2\right)+\left(a^2-4ad^2+4d^2\right)+\left(a^2-4a+4\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2\ge0\) ( luôn đúng)

Dấu "=" xảy ra khi: a = 2; b = c = d = 1


Các câu hỏi tương tự
Phượng Hoàng
Xem chi tiết
DRACULA
Xem chi tiết
Kaori Akechi
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Phượng Hoàng
Xem chi tiết
Thúy
Xem chi tiết
Phan Đức Gia Linh
Xem chi tiết
tràn thị thùy trang
Xem chi tiết
Trần Hoài Nam
Xem chi tiết