Giải:
Gọi \(ƯCLN\left(3n+2;5n+3\right)=d\) ta có:
\(\left\{\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{matrix}\right.\)
\(\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow15n-15n+10-9⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy phân số \(\frac{3n+2}{5n+3}\) là phân số tối giản (Đpcm)
Gọi d là UCLN(3n+2;5n+3)
Ta có \(\left[\left(3n+2\right)-\left(5n+3\right)\right]⋮d\)
\(\Rightarrow\left[5\left(3n+2\right)-3\left(5n+3\right)\right]⋮d\\ \Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\\ \Rightarrow\left[\left(15n-15n\right)+\left(10-9\right)\right]⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{3n+2}{5n+3}\)là phân số tối giản