6. Bất đẳng thức
Bài 9: Cho a, b, c, d, e \(\in\) R. Chứng minh các bất đẳng thức sau:
a. \(a^2+b^2+c^2\ge ab+bc+ca\)
b. \(a^2+b^2+1\ge ab+a+b\)
c. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
d. \(a^2+b^2+c^2\ge2\left(ab+bc-ca\right)\)
e. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
f. \(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
g. \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
h. \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
i. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\) với a, b, c >0
k. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) với a, b, c \(\ge\)0
1) Giải bất phương trình sau:
a) \(x^2+\sqrt{x+11}=11\) b) \(9+\sqrt{9+x}=x\)
2) Xét dấu:
a) \(f\left(x\right)=\frac{\left(x^2-1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x^2-5x+4\right)}\) b) \(h\left(x\right)=\frac{1}{x^2-2x+3}-\frac{1}{x+2}\)
Tập nghiệm của BPT \(\left|\frac{2x-1}{x-1}\right|>2\) là:
\(A.\left(1;+\infty\right)\)
\(B.\left(-\infty;\frac{3}{4}\right)\cup\left(1;+\infty\right)\)
\(C.\left(\frac{3}{4};+\infty\right)\)
D. \(\left(\frac{3}{4};1\right)\)
\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(x+y\right)}\ge\frac{3}{2}\) với abc=1
giải các phương trình sau
a. \(\left|\frac{4-x}{x-3}\right|=\left|\frac{2x+1}{2-x}\right|\)
b. \(10-6\left|x+1\right|=x^2-9x\)
c. \(\left|x^2-2x+3\right|=5-x\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Bài 4: Giải các bất phương trình sau:
e. \(\left|x-1\right|>\frac{x+1}{2}\)
f. \(\left|x-2\right|< \frac{x}{2}\)
g. \(\left|2x-5\right|\le x+1\)
h. \(\left|2x+1\right|\le x\)
i. \(\left|x-2\right|>x+1\)
Tập nghiệm của bất phương trình \(\sqrt{\left(x+4\right)\left(6-x\right)}\le2\left(x+1\right)\)có dạng S = \([\frac{\sqrt{109}-a}{b};6]\). Tính P = 2a + 3b
Giải các bất phương trình sau
a \(\frac{x^3-2x^2+4x}{-x^2+x+12}>0\)
b \(\frac{4x-3}{x-2}>7-\frac{3x-4}{x+3}\)
c \(\frac{\left(3-x\right)\left(x^2-4x+4\right)}{x^3-x}\le0\)
d \(\frac{2x-3}{3x+5}< \frac{3x+5}{2x-3}\)
e \(\frac{3x+2}{\left(x+1\right)\left(x+2\right)}\ge1\)
f \(\frac{x^3-3}{x^2-1}\ge3\)