\(x+\sqrt{xy}+y=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y>0\)
\(x-\sqrt{xy}+y=\left(\sqrt{x}-\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y>0\)
Do đó: \(\dfrac{x+\sqrt{xy}+y}{x-\sqrt{xy}+y}>0\)
\(x+\sqrt{xy}+y=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y>0\)
\(x-\sqrt{xy}+y=\left(\sqrt{x}-\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y>0\)
Do đó: \(\dfrac{x+\sqrt{xy}+y}{x-\sqrt{xy}+y}>0\)
Cho x;y;z>0 thỏa mãn \(x^2+y^2+z^2=3\)
chứng minh: \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho x, y, z > 0 thoả mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). Chứng minh: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Cho \(D=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}+\dfrac{xy+\sqrt{xy}}{\sqrt{xy}+1}\)
a. Tìm điều kiện của x,y để D có nghĩa
b. Chứng minh D là số nguyên với mọi \(x,y\in\) N*
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
cho x,y,z>0 chứng minh rằng
\(\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
Chứng minh (với những giá trị của biến làm cho biểu thức có nghĩa)
a) \(\dfrac{\left(3\sqrt{xy}-6y-2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}+\dfrac{2\sqrt{xy}}{x-y}\right)=\sqrt{x}+\sqrt{y}\)
So sánh:
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\) với \(B=\sqrt{5}-\dfrac{3}{2}\)
Giúp với mình sắp cần rồi
Cho x, y, z > 0 thoả mãn \(xyz=1\). Chứng minh: \(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
Cho biểu thức \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}};x\ge0,y\ge0,x\ne y\)
Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào x, y
Chứng minh rằng nếu \(\dfrac{\sqrt{xy}+1}{\sqrt{y}}=\dfrac{\sqrt{yt}+1}{\sqrt{t}}=\dfrac{\sqrt{xt}+1}{\sqrt{x}}\) thì x = y = t , xyt=1