Lời giải:
Xét mẫu số:
$\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{16}$
$=\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+4$
$=\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}$
$=(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{4}+\sqrt{6}+\sqrt{8})$
$=(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})$
$=(\sqrt{2}+\sqrt{3}+\sqrt{4})(1+\sqrt{2})$
Do đó: $P=1+\sqrt{2}$
Mà $\sqrt{2}$ là số vô tỉ (dễ chứng minh) và $1$ là số hữu tỉ nên $P$ là số vô tỉ (đpcm)