1) \(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}\)
= \(\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\)
= 6+3
=9
2) \(\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\frac{3+\sqrt{3}}{\sqrt{3}}\)
= \(\frac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}\)
= \(-\sqrt{3}+\sqrt{3}+1\)
=1
3)\(\frac{2-\sqrt{2}}{1-\sqrt{2}}+\frac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
= \(\frac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
= \(-2\sqrt{2}\)