Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Chứng minh bất đẳng thức: \(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (với a, b, c > 0)

Bích Ngọc Huỳnh
18 tháng 1 2018 lúc 13:11

BĐT cần chứng minh tương đương :

a8+b8+c8a3b3c3≥ab+bc+acabca8+b8+c8a3b3c3≥ab+bc+acabc

⇔a8+b8+c8a2b2c2≥ab+bc+ac⇔a8+b8+c8a2b2c2≥ab+bc+ac

⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac

Do a2+b2+c2≥ab+bc+aca2+b2+c2≥ab+bc+ac

Ta phải cm

a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2(1)

Đặt : (a2;b2;c2)=(x;y;z)(a2;b2;c2)=(x;y;z)

⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z

Áp dụng C.B.S

⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz

Theo Bunhiacopxki: x2+y2+z2≥(x+y+z)23x2+y2+z2≥(x+y+z)23⇒(x2+y2+z2)2≥(x+y+z)49⇒(x2+y2+z2)2≥(x+y+z)49

Theo Cauchy : ⇒3xyz≤(x+y+z)39⇒3xyz≤(x+y+z)39

⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z

⇒⇒⇒x3yz+y3xz+z3xy≥x+y+z⇒x3yz+y3xz+z3xy≥x+y+z

=> đpcm


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Nguyễn Hải An
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Agelaberry Swanbery
Xem chi tiết
Lưu Phương Thảo
Xem chi tiết
Mai Huyền My
Xem chi tiết
Big City Boy
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
yeens
Xem chi tiết