Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kẹo Cực Chảnh

Chứng minh

B = \(8^{10}+32^7\) chia hết cho 33

Trần Quỳnh Mai
10 tháng 1 2017 lúc 17:44

Ta có : \(B=8^{10}+32^7=\left(2^3\right)^{10}+\left(2^5\right)^7\)

\(=2^{30}+2^{35}=2^{30}.1+2^{30}.2^5=2^{30}.\left(1+2^5\right)=2^{30}.33⋮33\)

Vậy : B chia hết cho 33

Chibi dễ thương ^ _ ^
10 tháng 1 2017 lúc 17:49

B = 810 + 327

= (23)10 + (25)7

= 230 + 235

= 230.1 + 230. 25

= 230. (1 + 25)

= 230 . 33

Vì 33 \(⋮\)33 => 230. 33 \(⋮\)33.

Chúc bạn học tốt!

Hoàng Lê Bảo Ngọc
10 tháng 1 2017 lúc 17:53

\(B=8^{10}+32^7=\left(2^3\right)^{10}+\left(2^5\right)^7=2^{30}+2^{35}\)

\(=2^{30}\left(2^5+1\right)=33.2^{30}\) luôn chia hết cho 33


Các câu hỏi tương tự
Nguyễn Phương Linh
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Bée Dâu
Xem chi tiết
Ngô Thị Thảo May
Xem chi tiết
Bée Dâu
Xem chi tiết
Nguyễn Minh Trí
Xem chi tiết
Minamoto Shizuka
Xem chi tiết
Bée Dâu
Xem chi tiết
Hoàng Mai Lê
Xem chi tiết