Ta có abc+bca+cab
=100a+10b+c+100b+10c+a+100c+10a+b
=(100a+a+10a)+(10b+100b+b)+(c+10c+100c)
=111a+111b+111c
=111*(a+b+c)=37*(3a+3b+3c)=3*(37a+37b+37c)
TH1:Mà 111 không phải là số chính phương nên để 111*(a+b+c) là số chính phương thì (a+b+c)=111
Mà a<10;b<10;c<10
=>a+b+c<30(mâu thuẫn)
TH2:Mà 37 không phải là số chính phương nên để 37*(3a+3b+3c) là số chính phương thì (3a+3b+3c)=37
Mà 3a\(⋮\)3;3b\(⋮\)3;3c\(⋮\)3
=>3a+3b+3c\(⋮\)3
Mà 37\(⋮̸\)3(mâu thuẫn)
TH3:Vì a>0;b>0;c>0
=>37a+37b+37c>111
Mà 3 không phải là số chính phương nên để 3*(37a+37b+37c) là số chính phương thì 37a+37b+37c=3(mâu thuẫn)
Ta thấy trong cả 3 trường hợp thì abc+bca+cab đều không thể số chính phương
Nên abc+bca+cab không thể là số chính phương(điều phải chứng minh)