\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
A = a3 + b3 +c3 -3abc thành nhân tử.
Lời giải:
Từ (a+b)3= a3 + 3a2b +3ab2 + b3
= a3 + b3 + 3ab (a+b)
Ta suy ra: a3 + b3 = (a+b)3 - 3ab (a+b) (1)
áp dụng hằng đẳng thức (1) vào giải bài toán ta có:
A = (a3 + b3) + c3 - 3abc
= (a+b)3 - 3ab (a+b) + c3 - 3abc
= (a+b)3 + c3 - 3ab (a+b) - 3abc
= (a+b+c) (a2 +2ab + b2 -ac - bc + c2 - 3ab)
= (a+b+c) (a2+ b2 +c2 -ab - bc - ac) (*)