Từ \(a+b+c=1\Rightarrow2a+2a+2c=2\)
\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)
Ta có: \(\dfrac{a+bc}{b+c}=\dfrac{a\left(a+b+c\right)+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}\)
Tương tự ta viết lại biểu thức cần chứng minh như sau:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\)
Đặt \(\left\{{}\begin{matrix}x=b+c\\y=a+c\\z=a+b\end{matrix}\right.\) vậy BĐT cần chứng minh là:
\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge2\forall\)\(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2\end{matrix}\right.\)
Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\\\dfrac{xz}{y}+\dfrac{yz}{x}\ge2y\\\dfrac{yz}{x}+\dfrac{xy}{z}\ge2z\end{matrix}\right.\)
Cộng theo vế rồi thu gọn ta điều phải chứng minh
Note:\(\dfrac{a+ab}{a+b}???\rightarrow\dfrac{c+ab}{a+b}\)