Đặt A = \(5^1+5^2+5^3+...+5^{2016}\)
\(\Rightarrow A=\left(5^1+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2015}+5^{2016}\right)\)
\(\Rightarrow A=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{2015}+\left(1+5\right)\)
\(\Rightarrow A=5.6+5^3.6+...+5^{2015}.6\)
\(\Rightarrow A=6.\left(5+5^3+...+5^{2015}\right)\)
Vì \(6⋮6\Rightarrow A⋮6\)
\(\Rightarrow A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2014}+5^{2015}+5^{2016}\right)\)
\(\Rightarrow A=5.\left(1+5+5^2\right)+5^4+\left(1+5+5^2\right)+...+5^{2014}+\left(1+5+5^2\right)\)
\(\Rightarrow A=5.31+5^4.31+...+5^{2014}\)
\(\Rightarrow A=31.\left(5+5^4+...+5^{2014}\right)\)
Vì \(31⋮31\Rightarrow A⋮31\)
dễ như ăn cháo mà hỏi chi vậy , học thầy hướng dẫn chứ