Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vũ hoàng anh

cho\(\Delta\)ABC có AB< AC kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE=AB trên tia AB lấy điểm F sao cho AF=AC chứng minh rằng

a.\(\Delta\)ABC = \(\Delta\)AED

b. AD\(\perp\)FC

c. \(\Delta\)BDF = \(\Delta\)EDC và BF = EC

d. F, D, E thẳng hàng

nguyễn triệu minh
12 tháng 4 2020 lúc 18:57

a) +) Xét ΔABC và ΔAED có

AB = AE (gt)
BAC : góc chung

AC = AD (gt)

⇒ ΔABC = ΔAED (c.g.c)

b) Gọi K là giao điểm của AD và FC

Xét ΔAKF và ΔAKC có

AF = AC (gt)

DAB = DAC ( do Da là pg BAC )
AK ; cạnh chung

⇒ ΔAKF = ΔAKC (c.g.c)
⇒ AKF = AKC ( 2 góc t/ứ)
Mà AKF + AKC = 180o ( kề bù)

⇒ AKF = AKC = 90o

Lại có AD cắt FC tại K
AD⊥FCAD⊥FC tại K
c) +) Xét ΔABD và ΔAED có

AB = AE (gt)
BAD = CAD

AD : cạnh chung

⇒ ΔABD = ΔAED (c.g.c)
⇒ DB = DE ( 2 cạnh t/ứ)

và ABD =AED ( 2 góc t/ứ)

⇒ 180o - ABD = 180o - AED

⇒ FBD = CED

Ta có {AB=AEAF=AC{AB=AEAF=AC (gt)
⇒ AB - AF = AE - AC

⇒ BF = EC

Xét ΔBDF và ΔEDC có

BD = ED (cmt)
FBD = DEC (cmt)

BF = EC (cmt)

⇒ ΔBDF = ΔEDC (c.g.c)

d) Ta có ΔBDF = ΔEDC

⇒ BDF = EDC ( 2 góc t/ứ)
Mà 2 góc này đối đỉnh

⇒ F ; D ; E thẳng hàng

mong ctv tick


Các câu hỏi tương tự
Qanhh pro
Xem chi tiết
Qanhh pro
Xem chi tiết
Tạ Yên Nhiên
Xem chi tiết
crewmate
Xem chi tiết
nguyễn hoài thu
Xem chi tiết
Jimin
Xem chi tiết
AHJHI
Xem chi tiết
dream XD
Xem chi tiết
phạm Thị Hà Nhi
Xem chi tiết