a)
Xét ΔvABD và ΔvHBD, ta có:
BD cạnh chung
∠ABD = ∠HBD ( BD là phân giác của ∠B )
⇒ ΔABD = ΔHBD ( ch-gn ) ( đpcm1 )
⇒ AB = HB ( cctứ ) ⇒ B thuộc đường trung trực của AH (1)
AD = HD ( cctứ ) ⇒ D thuộc đường trung trực của AH (2)
Từ (1), (2) ⇒ BD là đường trung trực của AH
⇒ BD ⊥ AH ( đpcm2 )
b)
Xét ΔvABC và ΔvHBK, ta có:
AB = HB ( cmt )
∠B chung
⇒ ΔABC = ΔHBK ( cgv-gn ) ( đpcm )
c)
ΔBKC: Hai đường cao CA và KH cắt nhau tại D
⇒ D là trực tâm của ΔBKC
⇒ BD là đường cao của ΔBKC
⇒ BD ⊥ KC
Vì BD ⊥ AH (cmt); BD ⊥ KC (cmt)
⇒ AH // KC
⇒ Tứ giác AHCK là hình thang
Hình thang AHCK có: AC = HK (ΔABC = ΔHBK)
⇒ Tứ giác ACHK là hình thang cân (đpcm)