Vì \(b^2=ac\) nên \(\dfrac{a}{b}=\dfrac{b}{c}\) (1)
Vì \(c^2=bd\) nên \(\dfrac{c}{d}=\dfrac{b}{c}\) (2)
Từ (1) và (2) suy ra:\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\) \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{abc}{bcd}=\dfrac{a}{d}\) (3)
Áp dụng tính chất của dãy tỉ lệ thức bằng nhau, ta có:
\(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (4)
Từ (3) và (4) suy ra:
\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (đpcm)