Ta có : \(y'=e^{-\frac{x^2}{2}}+x\left(-x\right)e^{-\frac{x^2}{2}}=e^{-\frac{x^2}{2}}\left(1-x^2\right)\)
\(xy'=\left(1-x^2\right)xe^{-\frac{x^2}{2}}=\left(1-x^2\right)y\)
Ta có : \(y'=e^{-\frac{x^2}{2}}+x\left(-x\right)e^{-\frac{x^2}{2}}=e^{-\frac{x^2}{2}}\left(1-x^2\right)\)
\(xy'=\left(1-x^2\right)xe^{-\frac{x^2}{2}}=\left(1-x^2\right)y\)
Cho \(y=\frac{1}{1+x+\ln x}\), chứng minh hệ thức \(xy'=y\left(y\ln x-1\right)\)
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5-y^5+xy\right)=x^3f\left(x^2\right)-y^3f\left(y\right)+f\left(xy\right)\)
Em cảm ơn ạ !!!
cho y=\(\ln\frac{1}{1+x}\) chứng minh hệ thứ xy'+1=\(e^y\)
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
@Akai Haruma @Nguyễn Việt Lâm
Giúp em với ạ, em cảm ơn
Cho hàm số \(y=\dfrac{1}{3x^2-x-2}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3}{\left(3x+2\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{5}\left(\dfrac{3}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}\right)\)
cho hàm số \(f\left(x\right)=2x^2+1\). đặt \(y=f\left(x\right)-f'\left(x\right)\). tìm x để \(y'\left(x\right)=0\)?
Cho hàm số \(y=\dfrac{1}{2x^2+x-1}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2019}}{\left(2x-1\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}+\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
Tính đạo hàm:
a) y= \(\left(x^5+2x\right).\left(x^6-3\right).\left(3x^7+6x^2-2\right)\)
b) y= \(\left(x^4-\dfrac{2}{3x}\right)^5\)tại x=10
c) y= \(\dfrac{5x-2}{x+1}\) tại x=4
\(y=\left(x+\sqrt{x^2+1}\right)^3\) chung minh \(\sqrt{x^2+1}.y^'-3y=0\)